“Basic Solid State Chemistry”, 2" ed. West, A. R.

Chapter 1 Crystal Structures

Many of the properties and applications of crystalline inorganic materials
revolve around a small number of structure types

— We must first consider some basic concepts of crystallography for
structure description.

1.1 Unit cells and crystal systems

Crystal: regular arrangements of atoms in three dimensions

represented by a repeating unit or motif

unit cell
Unit cell: the smallest repeating unit showing the full symmetry of the
crystal structure.

first consider 2D, Fig.1.1(a); possible repeat units (b)—(e)
NaCl
Adjacent squares share edges and corners

The choice of origin of the repeat unit:

1. personal taste

2. NaCl is usually chosen as (b) or (¢), rather than (d)
H_J

easier to draw and visualize,
contain atoms at special positions,
corners, edge centers,...

3. symmetry is evident
Comparing (e) with (b) and (c)
a. the units in (e) are half the size of those in (b) and (¢)
.". (e) 1s preferred in 2D

b. In 3D, however, (¢) is preferred because it shows the cubic
symmetry.
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(f) shows examples of what is not a repeat unit
a. (top) the squares are identical, but it is not permissible to
isolate unit cells
b. (bottom) it contains units that are not identical (1 and 2)

Fig.1.2 shows the unit cell of NaCl in 3D:
a. Na: corner and face center positions
b. Cl : edge centers and body centers
c. the unit cell is cubic
a=>b = c in length for the three edges
a = =1v=90°for the three angles
between b&c \

between a&c
Tablel.1 and Fig 1.3: Seven Crystal_Systems
7 possible shapes

governed by the presence or
absence of symmetry

1.2 Symmetry

Rotation axis, n

Fig.1.4(a) Silicate tetrahedron
the vertical Si—O bond as the axis
a. every 120° the tetrahedron finds itself in an identical position.

b. different identical positions are possible — possess symmetry

c. the axis is a rotation axis
this is an example of a symmetry element;
the process of rotation is a symmetry operation.
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Fig. 1.3 The seven crystal systems and their unit cell shapes

Table 11 The seven crysial systemes
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Tablel1.2 shows different symmetry elements

Fig.1.4 (a) Si0O4
A rotation axis, n, and by 360/n degrees gives an identical
orientation; the operation is repeated n times before the original
configuration is regained.

. n =3, the axis is a threefold rotation axis.

Si0, tetrahedron possesses four threefold rotation axes.

Fig.1.4 (b) Si0O,
twofold rotation axes, passing through the central Si and bisect
the O—-Si1—O bonds; Si0, tetrahedron possesses three twofold
axes.

Rotational symmetry can be n =2, 3,4 and 6
n =15, 7 are never observed
a molecule can have pentagonal symmetry (n = 5), but their
fivefold symmetry cannot be exhibited by the crystal as a
whole (Fig.1.4(c)).

Fig.1.4(d) shows sixfold rotation axes.
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Mirror plane, m

Two halves of , for instance, a molecule can be interconverted by
carrying out the imaginary process of reflection across the mirror
plane. The Si0, tetrahedron possesses six mirror planes

Fig.1.5(a): silicon and oxygens 1 and 2 lie on the mirror plane; 3,4 are
interchanged on reflection. A second mirror plane lies in the plane of
the paper; Si and 3,4 lie on the mirror but 2, in front of the mirror, is
the image of 1, behind the mirror.

Center of symmetry, 1

The center of symmetry is a point and an identical arrangement can be
found on the other side.

An AlOg octahedron has a center of symmetry located on the Al atom.

(Fig.1.5 (b), Al as the center, oxygen 2 can be obtained from 1 by
extending an equal distance on the other side.)

S10,4 dose not have a center of symmetry.

Inversion axis, I

a symmetry operation involves rotation and inversion through the

center; Fig.1.5(c), Oxygens 2 and 3 are related by a 4 (fourfold

inversion) axis, i.e. 2 is rotated by 360/4 = 90° (to position 2”) and
then taken by inversion through the center to position 3.

1 is simply equivalent to the center of symmetry.

The two fold inversion axis is the same a mirror plane perpendicular
to that axis.

Point Symmetry:

» the symmetry elements discussed so far
» at least one point stays unchanged during symmetry operation
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» finite-sized molecules can only possess point symmetry elements

Space Symmetry:

Crystals have extra symmetries, including translation steps

Point '( Mirror plane m 0y, O}
symmetrv 1 Rofation avis n=73%44 CI{Cy Cy el
v adiiiived ¥ ' ANV VA VA AL Ry i -y oy Ty Y M\ MLy V) V)
7 Tia Ve LA = { A
1V CfblUI axl b .’I[= 1,4, CLL.)
Alternating axis — Su(S1, 82, etc.)
b b AN S brree . 4
LVOCHUC UL YU ICU.")’ 1 i
Space Glide plane a b, e dn -
symmetry — Screw axis 21, 3, etc. —

* ” M~ [ . . . 1
lnP rmﬂumrma aXIs m a (‘nmhmannn m I‘Old!!@.. {;g-‘gm} and retlection pemgngm!gr 10 the

rotation axis. It is little used in crystallography.

3

Fig. 1.5 Symmetry elements: (a) mirror plane; (b) centre of symmetry; (c) fourfoid
mversmu ams . I -



1.3 Symmetry and choice of unit cell
Tablel.1 the seven crystal systems

Table 11 The sewen ervsiad syrenss
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Cubic
Shape essential symmetry elements—by which crystal
system is defined.
a=b=c Four threefold axes
a=B=7=90° (run parallel to the cube diagonals)
Fig.1.2 NaCl additional symmetry elements
Fig.1.6 (a)

three fourfold axes  Fig.1.6 (a)
mirror planes Fig.1.6 (b,c)

(a) (b) (c)

Fig. 1.6 (a) Two-, three-, and fourfold axes and (b, ¢) mirror planes of a cube



Shapes do not define the unit cells; they are a consequence of the
presence of certain symmetry elements.

Tetragonal

Essential symmetry
a=b+#c single fourfold axis

a=p=y=90°
» acube that is either squashed

Fig.1.7 (a) CaC, or elongated along one axis
C=C .. all threefold axes and two of the fourfold
carbide ion 1s axes are lost

cigar-shaped, c-axis the unique one

» the choice of a tetragonal unit cell for NaCl
(Fig.1.7 (b) (Fig.1.1 (e)) is rejected, even if
the tetragonal has half the volume of the
cube.

(Cubic is always preferred)

Trigonal

Essential symmetry
a=b=c single threefold axis
a=p=7#90
Fig.1.7(c) NaNO;
» acube by stretching or compressing the
cube along one of its body diagonals
. only one threefold axis parallel to this

direction is retained, but others are

destroyed
It is possible to describe such a trigonal cell for NaCl with ¢ = 8 = 7 = 60° with Na

at the corners and Cl in the body center. This is unacceptable because cubic NaCl has
symmetry higher than trigonal.

Hexagonal

a=b+#c Essential symmetry
a=L£=90° v =120° one sixfold axis (discussed later, Fig.1.17)
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Fig. 1.7 (a) Tetragonal unit cell of CaCy: note the cigar-shaped carbide ions are aligned
parallel to ¢; (b) relation between ‘tetragonal’ and cubic cells for NaCl; () derivation of
a primitive trigonal unit cell for NaCl from the cubic cell

Fig. 1.17 Hexagonal unit cell of a hep arrangement of spheres
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Orthorhombic

Essential symmetry

aFb#c three mutually perpendicular
a=pB=7 =90° mirror planes
or
a shoebox three mutually perpendicular two fold
axes

the angles are 90° but the sides are of unequal length

Monoclinic

Essential symmetry
axb+#c a mirror plane
a=1v=90> B +#90° or/and

a twofold axis

» derived from orthorhombic shoebox by
partially shearing the top face relative to
the bottom face and in a direction parallel
to one of the box edges.

most of the symmetry is lost

One of the monoclinic unit cell axes is unique since it is perpendicular to the other
two. The unique axis is b.

Triclinic
Essential symmetry

a*b+#c none

a+# B+ v #90°
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1.4 Lattice, Bravais lattice
It is useful to represent the manner of repetition of atoms, ions or
molecules in a crystal by an array of points:

the array = alattice
the points = lattice points

NaCl structure shown in Fig.1.8(a) is represented by an array of
points in Fig.1.8(b)

each point represents one Na and one Cl

but the location of lattice point (at Na, CI or in between) is
irrelevant. A unit cell can have lattice points at some specific
positions — Lattice Type.

Units cell: constructed by linking the lattice points

Lattice type

Primitive, P: lattice points only at the corners, Fig.1.8(b)
B

Centered — additional lattice points at the center, Fig.1.8(b)A

several types of centered lattice

[ F: face centered lattice, additional points in each face

C— extra lattice points are on the ab faces
Fig.1.9 ¢ E A—extra lattice points are on the bc faces
side centered lattice
I: body centered lattice, an extra point at the body center
Example: ka. Cu metal, a face centered cubic structure, fcc
b. a-iron (Fe), a body centered cubic structure, bcc
c. CsCl, Cs at corners and Cl at the body center, but it is

primitive. For a body centered lattice, the atoms located at
the corners must be identical to those at the body center.
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Combination of Crystal System and Lattice Type
— fourteen Bravais lattices are possible

Tablel.1 Crystal system (column 1); Lattice type (column 4)
e.g. primitive monoclinic, C—centered monoclinic, primitive triclinic

the trigonal lattice can be represented by a primitive rhombohedral
lattice witha=b=c, a = 8 = 7 #90° (Table 1.1 trigonal (b)), or a

hexagonal lattice (stacking in ABCABC... sequence) of 3 lattice
sites per cell (Hammond Fig. 3.3b, Table 1.1 trigonal (a), also belong to the
hexagonal system)

Only 14 Bravais lattice are possible, and the reasons for absence
(a) violate symmetry requirements,
e.g. C—center lattice cannot be cubic (need threefold axes)
(b) can be represented by a smaller, alternative cell
e.g. a face centered tetragonal cell can be redrawn as a body
centered tetragonal cell (the volume is halved, but the symmetry
remains the same).

Fig. 3.3a, hexagonal lattice: they are stacked directly one on top of the other.
Fig. 3.3b, rhombohedral lattice: the next two layers of point lie above the triangular

“hollow” or interstices of the layer below, giving a three layer repeat.
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1.5 Lattice planes and Miller indices

Lattice planes, a concept introduced with Bragg’s law of diffraction,
are defined from shape and dimensions of the unit cell.

Lattice planes are imaginary and provide a reference grid to which the
atoms in the crystal structure may be referred.

Sometimes, a given set of lattice planes coincides with layers of atoms,
but not usually.

Fig.1.10(a)

» 2D array of lattice points

» different sets of rows and for each there is a characteristic
perpendicular distance, d , between adjacent rows.

» in 3D, rows — lattice planes interplanar d-spacing, d. The
Bragg diffraction angle, 6, for each set is related to the d-spacing.

Lattice planes are labeled by assigning three numbers known as Miller
indices to each set. Fig.1.10 (b)

Fig.1.10 (b) shows two planes are parallel and pass obliquely
through the unit cell. A third plane in this set must, by definition,
pass through the origin O. (many more parallel planes in this set)

To assign Miller indices to a set of planes, there are three stages:

1. Identify the plane which is adjacent to the one that passes through
the origin

2. Find the interaction of this plane on the three axes:

. a . ) C
cuts x-axis at E , y-axis at b, z-axis at E

ie (3,1, %) the fractional intersections
2

3. Take reciprocals of these fractions —(213)

three integers, (213) are the Miller indices of the plane and all
other planes that are parallel to it and are separated from adjacent
planes by the same d-spacing.

15
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Fig. 1.11  Examples of Miller indices: (a) (101); (b) (100): (c) (200); (d) (h00); (e) indices
of directions [210] and [323]

16




Some examples for determining the Miller indices

Fig. 1.11(a)
The shaded plane cuts x,y,z at 1a, «ob, 1c

.".Miller indices
= (101) The plane parallel to b

Plane is parallel to the axis with 70"
Fig. 1.11(b)
Planes 1 and 2 comprise opposite faces of the unit cell
Plane 1 passes through the origin (cannot be used to determine indices)
Plane 2 has intercepts at la, cob, coc
= (100) as the Miller indices

Fig. 1.11(c)
There are twice as many planes as in Fig. 1.11(b)
Plane 2 is the one that is closest to the origin
Intercepts at 1/2, oo, o©
(200) as the Miller index for all the planes, the (200) set.

Fig. 1.11 (d)
(100) (200) (300)

If extra planes are interleaved between adjacent (100) planes then all
planes labeled as (200); likewise for (300).

General symbol for Miller indices in (hkl)
Symbol { } is used to indicate sets of planes that are equivalent,
e.g. the sets (100), (010) and (001) are equivalent in cubic crystals
= represents collectively as {100}
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High-resolution TEM image of a single TiO, nanorod obtained from
hydrothermal treatment (at 175°C for 48 h) of a nanotube suspension with

pH = 5.6 and the corresponding selected-area electron diffraction pattern

(inset).
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Figure 1. Powder XRD patterns of the titanate specimens obtained from
the solid-state synthesis (designated as Sodium-Titanate), from the
hydrothermal  treatment on  Sodium-Titanate (designated as
Sodium-Titanate-H), and from the acid treatment on Sodium-Titanate-H
to pH values of 6 and 1.7 (designated as Sodium-Titanate-HA and NT,
respectively). The diffraction peaks are indexed according to the
orthorhombic-phase structure shown in Figures 4a and b for

Sodium-Titanate and Sodium-Titanate-HA, respectively.
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Figure2 TEM images of the Sodium-Titanate specimen obtained
from the solid-state synthesis (a) and the selected area electron diffraction

patterns with their corresponding HRTEM images showing the lattice

fringes directing along the zone axis [ 2 11 ] (b) and the axis [1 117 (c).
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Figure3  Observed (dot) and Rietveld-refinement simulated (line)
XRD profiles for the Sodium-Titanate and Sodium-Titanate-HA
specimens. The difference between the observed and simulated data is
shown at the bottom of the figures. The reliability factors are Ry, = 0.129
and R, = 0.085 for Sodium-Titanate and R,,, = 0.123 and R, = 0.087 for

Sodium-Titanate-HA.
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Figure4  Proposed crystal structures of Na,Tiyulx4O4 for the
Sodium-Titanate specimen in orthorhombic C-base-centered symmetry (a)
and Nay, H,Tip 4l 4O4(OH),,nH,O for the Sodium-Titanate-HA
specimen in orthorhombic body-centered symmetry (b). In both models
the interlayer sites are shown in a fully occupied situation. Because of the
small scattering factor for H atoms, OH and H,O are not distinguished in
the structural simulation. The change from the C-base-centered symmetry
to the body-centered symmetry can be caused by a slip of the middle

layer by c¢/2 along the c axis against the top and bottom layers.
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Powder X-ray diffraction patterns of the ED25 and ED65 Cu,O powders
(upper section) and the films (lower section). The standard diffraction

pattern of Cu,O from JCPDS is provided at the middle of this figure.

23



1.6 Indices of directions

Directions in crystals and lattices are labeled by first drawing a line
that passes through the origin and parallel the direction of concern.

[% 2 0], [110], [330] all describe the same direction, but

conventionally [110] is used. [xyz] are arranged to the set of smallest
possible integers.

Cubic [100], [010], [001] are equivalent and can be represented
collectively as <100>

For cubic systems, [hkl] directions is always perpendicular to the (hkl)
plane of the same indices, but this is only sometimes true in non-cubic
systems.

Fig. 1.11 (e), [210], [ 323]
[210]: taking the origin at the bottom left front corner
taking the intersection point: 1, 0.5, 0, to define the direction

[323]: taking the origin at the bottom right front corner

taking the intersection point: —1, 0.67, 1, to define the direction
the bar sign indicates a negative direction
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1.7 d-spacing formulas

For a cubic unit cell,
The (100) planes have a d-spacing of a
The (200) planes, d = a/2

For orthorhombic crystals (a=/5=1v =90°)

1 h> k> I°

2 2 2 2
dth a b c

for (hkl) planes this eq. can be used for:
tetragonal: a=b+#c
cubic: a=b=c

For monoclinic and triclinic crystals
See Appendix 1

1.8 Crystal densities and unit cell contents

Formula
{ weight

Mass FW FW

Volume molar volume Volume of formula unit x N

N = Avogadro’s number

Z = content of formula unit in a unit cell
= unit cell content

V = unit cell volume
= yolume of one formula unit X Z
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On the basis of unit cell
D= FW x Z _ FW x Z x1.66
T V xN \Y — It
102%cm®  6.02x10%
1A°
Uses of the above equation:
a. to check that a given set of crystal data is consistent and that an
erroneous formula weight has not been assumed.
b. to determine any of the four variables if the other three are known.
c. by comparison of Dy and D.,., information may be obtained on the
presence of crystal defects such as vacancies or interstitials, the
mechanisms of solid solution formation and the porosity of ceramic
pieces.

gcm’3

Z value determination
Fig. 1.9(c), «a -Fe, body-centered cubic (bcc)

The corner atoms: 8, each is shared between eight neighboring unit cells
The body center atom: 1, entirely inside the unit cell

Z=(8x%)+1=2

Fig. 1.9(a), face-centered cubic (fcc), Cu
The corner atoms: 8
The face center atoms: 6, each shared between two unit cells

Z=(8x%)+(6x%)=4

Fig. 1.2, NaCl, fcc

Assuming the origin at Na — same as Cu
.".unit cell contains 4 Na

Cl: edge center positions: 12, each shared between four

body center: 1
.".unit cell contains 4 C1 = (12 x% )+ 1

Z =4 Na(Cl
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Appendix 1

Interplanar Spacings and Unit Cell Volumes

The value of d, the perpendicular distance between adjacent planes in the set
(hkl), may be calculated using the formulae:

. 1 R4+ + P
Cubic A e
1 B+k P
Tetragonal = l:T + )
! -1 h2 B P2
Orthorhombic = — o 5 +
1 R b+ kN 2]
Hexagonal =3 (—T—) 5 2
.. 1 1 (W K*sin’3 I 2hicospB
Monoclinic 7 -S—m—zﬁ (—2 + —b2——r+ A
Triclini 1 112b22 k2 2 a2
riclinic 5 =77 [RPb2c*sin®a + k2aPPsin®B
+ PPa*b*sin’y + 2hkabc? (cos o cos 3 — cos )
’ + 2klabe(cos B cosy — cos )

+ 2hlab®c(cos o cos y — cos A))]

where V' is the cell volume. The unit cell volumes are given by:

Cubic -V =d

Tetragonal V =dc

Orthorhombic V = abc

Hexagonal = (v3a%c) /2 = 0.866a%¢

Monoclinic = abc sinf

Triclinic = abe(l — cos’a — cos-ﬂ — cos?y + 2cos a cos B cos fy)]f 2
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